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On the partial dierential equations of mathematicalysits.
By

E. T. WHITTAKER in Cambridge.

81l
I ntroduction.
The object of this paper is the solution of Laplagetential equation
0V 9V oV
+ +
ox2 0y? 0272
and of the general dédrential equation of avemotions
0V 9V VvV L,V
+ + =Kk —,
0x2 0y? 0272 ot?2

and of other equations deed from these.

In § 2, the general solution of the potential equation is found.

In 8 3, a number of results are deduced from this, chiefly relating to particular solu-
tions of the equation, ana@ansions of the general solution in terms of them.

In 8 4, the general solution of thefdifential equation of avemotions is gren.

In 8 5, a number of deductions from this general solutionvengincluding a theo-
rem to the déct that ag solution of this equation can be compounded from simple
uniform plane vaves, and an undulatoryiplanation of the propagion of graitation.

81
The general solution of the potential equation.

:O’

We dall first consider the equation
0%V 0V 0%V
+ +
ox2 0dy2 022
which was originally gven by Laplace*).

=0,

*) Mémoire aur la theorie de I'anneau de Saturre’87.
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This equation is satisfied by the potential oy arstribution of matter which at-
tracts according to the Mgonian Lav. We dhall first obtain a general form for poten-
tial-functions, and then shall shehat this form constitutes the general solution of
Laplaces equation. >Fronthe identity

2
1 1 du

2) “27) (z-o)+i(x-a)cosu+i(y-b)snu’

we see that the potential atygooint (x, y, z) of a particle of massn, stuated at the
point (@, b, ¢), is

2r
du

m
ZJ (z +ix cosu + iy sinu) — (c +ia cosu + ib sinu)

which, considered as a functionxafy, z, is an expression of the type

2

J’ f(z+ix cosu +iy sinu, u)du,

wheref denotes some function of thedvarguments
z+ixcosu+iysinu and u

It follows that the potential of gmumber of particlesn; m, ..., m situated at the
points @;b;c,), (a;b,C,), (azbscy), - - -, acbkcy), is an &pression of the type

2r

J.{ fi(z+ix cosu +iy sinu, u) + f,(z+ix cosu + iy sinu, u)

+ f(z+ix cosu +iy sinu, u) }du

or

2

J f(z+ix cosu +iy sinu, u) du,

wheref is a nev function of the tw aguments
z+ixcosu+iysinu and u.

In this way we see thdhe potential of any distrition of matter whil attracts ac-
cording to the Nevtonian Law can beepresented by anxpression of the type

2

J. f(z+ix cosu +iy sinu, u)du.
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The question ne naturally suggests itself, whether the most general solution of
Laplaces equation can be represented by apression of this typeWe dall shev
that the answer to this is in thdiahative.

For letV (X, Y, Z) be any slution (single-alued or may-valued) of the equation

VAR VAR, Y/
+ +
ox2 0dy2 022

Let (Xo, Yo, Zo) be ome point at which some branch of the functit(x, y, z) is requ-
lar. Then if we write

:O,

X=X+ X, Y=Yot+VY, z2=2y+Z

it follows that for all points situated within a finite domain surrounding the point
(Xo, Yo, Zo), this branch of the functiovi(x, y, z) can be &panded in an absolutely and
uniformly corvergent series of the form

V=ag+a; X+bY+c,Z+a,X?+b,Y2+c,Z%+d,YZ
+e,ZX+ foXY+agX3+---.
Substituting this gansion in Laplace’equation, which can be written
0%V 0V oWV
+ +
0X2 9dY2 0Zz2

and equating to zero the cbeients of the arious pavers ofX,Y, and Z, we may ob-
tain an infinite number of linear relations, namely

=0,

a,+h,+c, =0, etc.
between the constants in theansion.

1 . -
There areé n(n—1) of these relations between tée(n +1)(n + 2) coeficients of
the terms of an degee n in the &pansion of V; so that only

h 1 0
[E (n+1)(n+2)- > n(n—1)gor (2n + 1) of the codicients of terms of dgeen in

O O
the expansion ofV are really independentt follows that the terms of deeenin V

must be a linear combination ofn(2 1) linearly independent particular solutions of
Laplaces equation, which are of dgeenin X,Y, Z.
To find these solutions, consider thgpansion of the quantity

(Z +iX cosu +iY sinu)"
as a sum of sines and cosines of multipleg af the form

(Z+iX cosu+iY sinu)" = go(X,Y, Z2)+9g:(X,Y, Z) cosu
+0,(X,Y,Z)cos i+ --+g,(X,Y, Z)cosnu
+hy(X,Y,Z2)sinu+hy(X,Y,Z)sin2u+---
+h,(X,Y, Z)sinnu.
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Now gn(X,Y, Z) and h,(X,Y, Z) are together characterised by tlaetfthat the high-
est paver of Z contained in them i2"™™; moreaver g,(X,Y, Z) is an even function
of Y, whereash,(X,Y, Z) is an odd function ofY; and hence the {2+ 1) quantities

9o(X,Y, Z), 91(X,Y, Z),...,h,(X,Y, Z)

are linearly independent of each other; ang @ne clearly homogeneous polynomials
of dgyreenin X,Y, Z; and each of them satisfies Laplace&juation, since the quanti-
ty (Z +iX cosu +iY sinu)" does so.They may therefore be tahn as the @+ 1) lin-
early independent solutions ofgteen of Laplace$ equation.

Now since by Burier’'s Theorem we hze te relations

2
1r . o,
On(X,Y,Z) == | (Z+iX cosu+iY sinu)" cosmu dy
/4
11)
2r
1r . N, .
ho(X,Y,Z) == | (Z+iX cosu+iY sinu)"sinmu dy
"4
it follows that each of theser(Z 1) solutions can bexpressed in the form

2r

J f(Z +iX cosu +1iY sinu, u) du

and therefore anlinear combination of theser{& 1) solutions can bexpressed in
this form. That is, the terms of grdegeen in the expansion oV can be rpressed in
this form; and therefor¥ itself can be xpressed in the form

2r

J F(Z +iX cosu +iY sinu, u)du

or

2r

J F(z+ix cosu +iy sinu — zy — iXy COSU — iyg Sinu, u)du,

or

2r

J. f(z+ix cosu +iy sinu, u)du,

since thez, +ixy cosu +iy sinu can be absorbed into the secorguanentu.
Now V was taken to be ay solution of Laplaces equation, with no restriction be-
yond the assumption that some branch ofasat some
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point a rgular function — an assumption which isvays tacitly made in the solution
of differential equations; and thus wevhahe result, thathe generl solution of
Laplaces gjuation

oV .\ oV .\ oV

ox2  0y? 62220'

2r

\% :J f(z+ix cosu +iy sinu, u) du,

wheee fis an arbitrary function of the two guments
z+ixcosu+iysinu and u

Moreover, it is dear from the proof that no generality is lost by supposingftisaa
periodic function od.

This Theorem is the three-dimensional analogue of the theorem that the general so-
lution of the equation

0’V 0%V
- 4+ = 0
0x2  0y?2

V= f(x+iy) +g(x —ly).

§ 1L

Deductionsfrom the Theorem of § 2; Particular Solutions;
Expansions of the General Solution.

1° Interpretation of the solutionWe may gve t the general solution just ob-
tained a concrete interpretation, as foto

Since a definite ingral can be @aded as the limit of a sum, we camaal V as
the sum of an infinite number of terms, each of the type

V, = f,(z+ix cosu, +iysinu,)

each term corresponding to sonaue ofu, .
But this term is a solution of the equation
0%V, .\ 0%V, -0
0X2 0Z?

where
X, = Xcosu, +ysinu,,
Y, = - Xsinu, +ycosu,
Z =z

so that ¥, Y, Z represent coordinates dexl from (x,y, z) by a rotation of the
axes through and angie round the axis ot.
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Thus we see thahe gneal solution of Laplaces equation can beagarded as the
sum of an infinite number of elementary constitu¥pisead constituent being the
solution of an equation

0%V, .\ 0%V, -0,
0X2  9Z2

and the ags (X, Y, Z;) being derved from the ars ,y, z) by a dmple rotation
round the axis of.

2°. The particular solutions in terms of g@ndre functions. It is interesting to see
how the well-knavn particular solutions of Laplase&guation in terms of Lgendre
functions can be obtained as a case of the solutien @i § 2

The particular solutions in question are of the form

r"P(cos@) cosmg and r"P]'(cosd) sin m¢
(n=0,1,2,--,00,m=0, 1, 2,--+, n),

where ¢, 6, ¢) are the polar coordinates corresponding to the rectangular coordinates
(x,y, 2), and where

(-D)™sin™e d™M(sint"e)
2nn! d(cosg)mm

Now the functionP}(cos#) can be &pressed by the ingeal

PT(cos#) =

2
(n+m(n+m-1)---(n+1)
T

P(cos#) =

(-1)™? J(cose +i sin@ cosy)" cosmy dy,

and thus we heae

2
(~1)m2 J(z +IVIXZFY2) cos )"

cosmy cosmgdy

(n+mMn+m=-1)---(n+1)
T

r"Pp'(cos@) cosmg =

2%
= (P Dy [+ 75 7y2 cosy)” cosmly - g)dy
1)

2r

_(n+m)(n+m=-1)--(n+1)
- 2

-b
We e therefore thdahe solutiorr "P'(cos8) cosmg is a numerical multiple of

F
-1)"2 | (z+ix cosu +iy sinu)" cosmu du
y

2

J(z +ix cosu + iy sinu)" cosmu du
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Similarly the solutiorr "P['(cos8) sin m¢ is a numerical multiple of

2

J(z +ix cosu + iy sinu)" sinmu du

>From this it is clear thah order to express any solution

2r

J f(z+ix cosu+iy sinu, u) du

of Laplaces equation, as a series of harmonic terms of the form
r"Pl(cos@)cosmg and r"P['(cosg)sin mg,

it is only necessary taxpand the function f as aylor series with @spect to the ft
argument zix cosu+iy sinu, and as a Burier series with éspect to the second-ar
gument u

As an @ample of this procedure, we shall suppose it required to find the potential
of a prolate spheroid in the form

2r

J f(z+ix cosu +iy sinu, u) du,

and to &pand this potential as a series of harmonics.

X2 + y? 20

a2 02
be the equation of the sade of the spheroid; and suppose that it is a homogeneous
attracting body of madd. To find its potential, we can makse of the theorem that
the potential at>@ernal points is the same as that of a rod joining the foci, of line-den-

sity?"\f&;—z)f) that is, it is

2r Ve&a
du (¢ -a® - ¢%)dg

87z(c2 - a2)3/2 - ¢ +ixcosu+iysinu

—VCT a2

or
2z

B+Ve7 a2
J[(c - a —BZ)Iog# +2Vc? =% aZBDdu

87:(0 a)3’2 B-VcZ-a? 0

where B is written foz +ix cosu +iy sinu.

1
Expanding the inggrand in ascending pers OfE’ we havethe potential in the
form

2z
3M 0 1 c2-a?  (c®-a?)? O
[ + + +- - du.
27zJ.,—|1EBDB 3bB3 57 [B® =
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Since

2
1 du _ P,(cow)

or | BT (1

this gves the required epansion of the potentiaf the spheroid in Lgendre func-
tions, namely the series
[l 2 _ 52 2 _ A2\2 0

1 (cc—a“)P,(cow) N (c® —a“)“Py(cow) oo

3M +
o1 Br 30503 AVE -

This result may bex¢éended to the case of the potential of an ellipsoid with three un-
equal ars, by using a formula for the potential of an ellipsoiggby Laguerre*)

3. The particular solutions of Laplaceequation whit involve Bessel functions.
We dhall next shev how the well-knavn particular solutions of Laplasge&uation in
terms of Bessel functions can be obtained as a case of the general sdlh&qrar
ticular solutions in question are of the form

€], (kp)cosmg and €?J, (kp)sin mg,

wherek andm are constants, amg p, ¢ are the glindrical co-ordinates correspond-
ing to the rectangular co-ordinatesy, z, o that

X = pCOS¢, Y = pSing.
Now if in the solution
e?J..(kp) cosmg

we replacel,(kp) by its value

T

1
Intkp) = = J cos (6 - kp sing) de,

we find after a f& simple transformations that

2

kz (_1)m/2 k(z+ix cosu+iy sinu)
e“’Jn(kp) cosmg = o ‘!’ e ysihW cosmu du
/4

The other solutions whichwolve sn mg, can be similarly epressed: we see there-
fore thatthe solutions

e?J, (kp)cosmg and &2J.,(kp)sin mg,

*) C.R., 1878.
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are numerical multiples of

2r

J ek(z+ix cosu+iy sinu) cosmu du

and

2r

J ek(z+ix cosu+iy sinu) sinmu du

respectively It follows from this thatn order to express any solution

2r

J f(z+ix cosu+iy sinu, u) du

of Laplaces equation as a sum of terms of the form
e (kp)cosmg and &2J.(kp)sin mg,

it is only necessary taxpand the function f in terms of thepenentials of its fst ar
gument zix cosu+iy sinu, and as a bBurier series with espect to its second gu-
ment u.

As an eample of the use which may be made of these results, we shall suppose it
required to gpress the potential-function

V =1+e%Jy(p) +€ % Jo(2p) + €3 Jy(3p) +- - -

(wherezis supposed posi) as a ries of harmonic terms of the typealving Leg-
endre functions: and also to find a digitibn of attracting matter of which this in the
potential. Thiscan be done in the folldng way. We have

V =1+e%J5(p) + €% Jo(2p) +€ 3 Jy(3p) +- - -

2

— Zi J{l + e—z—ix cosu-iy sinu + e—2(z+ix cosu+iy sinu) +.. } du
T

2r
1 du

- E 1 — e(z+ix cosu+iy sinu)

But if t be ary variable diferent from zero, and such that "" 2 pi, we have

1 1 1 t t3 t°
- =——+4+_—--B,—+B,—-B —+
1-¢ t 2 “t2a TPar el N -
whereB, B,, are Bernoullis rumbers. Thereforeso long az is positve and " z "+
ix “cos™u "+ iy “sin"u <" 2 pi i.e, so long agis positie and x? +y? + z2 < 4z% we
have
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1 1 By, . _ O
— + -+ —(z+ixcosu+iysinu)+---du
2 E]z+|x cosu+iysinu 2 2! 0
or
1 1 B B, B
V= PR rPl(cose)—4— r3P2(cose)+?r Ps(cosg) + - -

andthis is the equired pansion of V as a series of harmonicgoining Legendre
functions.

Next, since
1 1 1 = 1 1
=—+—+ — + —
l-e2z 2 z = zZ+2nizx z-2nix
we hae
r -
1 h 1 0 1
V = du + (— — -
27 % z+ix cosu +iy sinu n:1Dz+|xcosu+|ysmu+2n|7z
1 (1]
+ - — — 1]
z+|xcosu+|ysmu—2n|7zm
or
1 1 — O 1 1 N

———— A [} s————— e ———— O
2 TRV 2 G anEe TR (Zoana)en
and therefore/ can be egarded as the potential due to a set of attimg masses
placed at equal imginary intervals2iz along the axis of z.

81l
. : R o VAR VAR B VAR, LV,
The differential equation 5z 32 t 372 =k 5 -
We dhall next consider the general tBfential equation of avemotions,

0V OV 0V _ L0V

ox2  0y2 9z2 o2’

wherek is a constant.
Writing kt for t, this becomes

R N R azv A%
ox2  0y? 622 ot2 '’
which we shall tak for the present as the standard form of the equation.
In order to find the general solution of this equation, we iolgrocedure analo-

gous to that of 8 2LetV(X, Y, z,t) be any lution (single-alued or may-valued) of
the equation; and lekg, Yo, Zo, tg) be a
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place at which some branch of the functivhis regular Then if we write
X=X+ X, ¥y=Yo+Y,z=2y+Z,t =ty + T, it will be possible to xpand this
branch of the functiol as a pwer-series of the form

V=ag+a X+bY+c;Z+d;T+a,X2+b,Y?+c,Z2+d,T2+e,XY
+ ,XZ+ GO XT+hYZ+KYT+1L,ZT +ag X3+ - -,
which will be absolutely and uniformly ceergent for a certain finite domain ok

ues ofX,Y, Z, T. Substituting this pansion in the diérential equation, which may
be written

R .\ 0%V .\ 0V _ oV
X2  aYy2 9z2 9T2’

and equating to zero the cbeients of \arious pavers of X,Y and Z, we dbtain an
infinite number of linear relations, namely

ay + b2 + Cr = d2’ etc.,
. : 1
between the constants in thepansion. Therare G (n=-1)n(n+1) of these rela-

1
tions between th% (n+1) (n+2) (n+3) coeficients of terms of andegeen in the
expansion olV; so that only

LN+ ) (M +2) (1+3)-(1- Dn(n+ 1)

or
(n+1y

of the codiicients of terms of dgeen in the epansion ofV are really independent.
It follows that the terms of deeen in V must be a linear combination of  1)? lin-
early independent particular solutions ofceenin X,Y,Z, T.

To find these solutions, consider thgpansion of the quantity

(X sinucosv+Y sinusinv+ Zcosu+T)".
If we first tale the expansion in the form

Jo+ Q1 COSV+(Q,COS &/ +---+(Q,COSNy,
+h;sinv+h,sin2/+---+h,sinny,

we hae sen in 8 2 thayy, 91, -+, dn, e, - - -, hy,, ae linearly independent functions
of X,Y,Z, andT. Moreover, g,, andh,, are of the form sifiu x a polynomial of de-
gree 1—m) in cosu, and therefore each of them contaims—(m+ 1) independent
polynomials inX,Y,Z,T. Thus the total number of independent polynomials in
X,Y,Z, T, in the pansion of

(X sinucosv+Y sinusinv+ Zcosu+T)"
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in sines and cosines of multipleswéndy, is

(n+1)+2n+2(n-1)+2(n-2)+---+2
or
(n+1)>%

Now each of these polynomials must satisfy the equation
0%V .\ 02V .\ 0V _ oV
0x2  9y2 922  ot2’

since the quantity
(X sinucosv +Y sinusinv+ Zcosu+T)"

does so: and therefore jhemay be takn as ther(+ 1)? linearly independent solutions
of the equation

0%V .\ 0%V .\ 0V 9%V

0x2  dy2 902 o2’
which are homogeneous ofgteen in X,Y,Z, T. Now by Fourier's theorem we
have

2

1 ) . .
Omn = — J(X sinucosv +Y sinusinv + Z cosu + T)" cosmv dy
T

and sincey,, is of the form

n-m
Z u, sin™ucos u,
r=0

whereu, is one of the polynomials in question, it is clear thatcan be rpressed as
a um of sines or cosines of multipleswgfaccording asnis even or odd; and the co-
efficient of one of these sines or cosines, say ofuds

T

2
- J dm COssu du
T

It follows that each of the polynomials can be gpressed in the form

T

J'gmf(wdu,

where f (u) denotes some periodic function of that is, it can beg@ressed in the
form

2r 7

JJ-(X sinucosv+Y sinusinv+Z cosu+T)" f (u) cosmv dudv.
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It follows from this that each of the ¢ 1)? polynomial solution of dgreen can be
expressed in the form

2r 7@

J’J.(X sinucosv +Y sinusinv+ Zcosu+T)" f(u, V) du dy,

where f (u, v) denotes some periodic function efandv; and therefore the terms of
degreenin V can be gpressed in this form.
The functionV itself can therefore bexpressed in the form

2r &

J.J. f(Xsinucosv+Ysinusinv+Zcosu+T,u,Vv)dudy

wheref denotes some function of the threguanents
Xsinucosv+Ysinusinv+ Zcosu+T, u, andv;

andf may without loss of generality be supposed to be periodi@airdyv.
Now

Xsinucosv+Y sinusinv+Zcosu+T
= (xsinucosv+ysinusinv+ zcosu +t)

— (Xp Sinucosv + yy sinusinv + z; cosu + ty);
and the termo
(Xg Sinucosv + y, sinusinv + z; cosu +t)

can be absorbed into thegamentsu andv; moreover V was taken to be ay solution
L : : .t
of the partial diferential equation; we ke, therefore, on ertlngE for t, the result
thatthe generl solution of the partial diérential equation of wave-motions,
0V 9V VvV L,V
+ + =Kk —,
ox2 0y? 022 ot?

2r

. . . t
V= J-J- f(xsinucosv + ysinusinv + zcosu + P ,U, V) du dv,
whete f is an arbitrary function of the tlee aguments

. . . t
Xslnucosv+ysinusinv+ ZCOSU+E ,uand v.
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81
Deductions from the general solution of § 4.

1°. The analysis of wave-motiongVe dhall nov deduce from the general solution
thus obtained a result relating the analysis of those phenomena which are represented
by solutions of the equation

0V 9V VvV L,V
+ + =k —.
ox2 0y? 0272 ot?

If we revert to the fundamental idea of the definite grid as the limit of a sum of an
infinite number of terms, we see that the general solution

2r 7

. . . t
V = JJ f(xsinucosv+ysinusinv+ zcosu+E ,U,Vv)du dy

can be interpreted as meaning tWas the sum of an infinite number of terms of the
type

: : : t
f(xsinucosv+ysinusinv+zcosu+ K u, v),

there being one of these terms correspondingéxy elirection in space gen by the
direction-cosines

sinucosv, Inusinv, cosu.

The solutionV can therefore be gerded as the sum of constituent solutions, each of
the type
. . . t
F(xsinucosv+ysinusinv+zcosu + E)

where the functioir varies from one directionu( v) to another
Now let us fix our attention on one of these constituent soluffond for some
range of alues of the quantity

. , . t
X SInucosv + yS|nusmv+zcosu+E )

the functionF is finite and continuous, we can for this range aftigs &pressF by
Fourier’s integral formula in the form

00 b

1 t
—Jdﬂ! F(a)cos{A (xsinucosv+ysinusinv+ zcosu+E)—ﬂa} d1de,
T

wherea andb are the terminals of this range dlwes; or supposing the igtation
with respect tar to be performed,

[¢e]

t
J. g(2)sr{ A(x sinucosv +ysinusinv+zcosu + E)} dx,

whereg(1) denotes some function at



348 E. T. WHITTAKER

Now let us agin revert to the idea of the definite irgeal as the limit of a sum.
Then this latter intgral can be @arded as the sum of an infinite number of terms of
the type

<™{ 2 (xsinucosv+ysinusinv+zcosu+ lk)},
each term being multiplied by sonecfor depending oa.

The solutionV can therefore be garded as constituted by the superpostion of
terms of this last typeBut a term of this type representssimple uniform plane
wave for on transforming the as so that the meaxis of x is the line whose direc-
tion-cosines are

sinucosv, Inusinv, cosu,
the term becomes
t
sm A(X+ E)'

which represents a simple planawgwhose direction of propagjon is the n& axis
of x. We se therfore thathe geneal finite solution of the diérential equation of
wave-motions

0V 9V VvV L,V
+ + =k
ox2 0y? 0272 ot?
can be analysed into simple plane waveppasented by terms of the type

. . . t
F(,u,Vv)$X A (xsinucosv+ ysinusinv+zcosu + E)}'
It is interesting to obseevthat Dr Johnstone Stonein 1897*) sheved by plysical
reasoning, and without gmeference to the equation

VAR o VAR VAR B,
+ + =k* = .
ox2 0dy2 022 ot2

that all the disturbance of the luminiferous ether arising from sources of certain kinds
can be resokd into trains of plane aves.
2°. Solution of the equation
0%V oV 9V
+ +
ox2 0dy2 022
If a solutionW of the equation
0*W .\ 0*W .\ 0°W _ °W
0x2  9y2  0z2  ot2
be of the formVe!, whereV is a function ofx, y, z only, which does not plve t,
thenV clearly satisfies the equation
VAR VAR LY/
+ +
0x2 0y? 022

+V =0.

+V =0,

*) Philosoph. M@azine (V) XLIII.



On the diferential equations of pisics. 349
and therefore, on reference to the general solution of #lvermvotion equation found
in 8 4, we see thdlhe geneal solution of the equation

VAR RV RY]
+ +
ox2 0y?2 072

+V =0

2r &

V = .J-.J' ei(x sinu cosv+y sinusinv+z cosu) f (U V) du dv

3. Deduction of the known particular solutions of the equation
VAR VARV

+ +
ox2 0y2 072
It is known that particular solutions of the equation
oV 9V 9V

+ +
ox2 0y2 072

+V =0.

+V =0

exist, which are of the form
1
V=r2 Jn+1(r)Pﬂ“(cos@)gﬂ,S me
2
(n2011121: m201 1121"'1n)1

wherer, 8, ¢ are the polar coordinates correspondingtyg, z. We shall nov shew
how these may be derd from the general solution of the equation which has just
been found.

For let the general soution be written in the form

2«

V = JJ ei(xsinucosv+ysinusinv+zcosu) f (U V) sinu du dv

where f (u, v) is an arbitrary function of the tw algumentsu andv, which may with-
out loss of generality be tak to be periodic inandv.
Now let the functionf (u, v) be expanded in sudce-harmonics af andv, so that

2r &

V = 21[1[ ei(xsinucosv+ysinusinv+zcosu)Yn(u’ V) sinu du dv
n=0

whereY,, is a surhce-harmonic of orde, i.e., if

& = psinucosv, n = psinusinv, { = pcosu,
are rgaded as the co-ordinates of a point in space, &h(u, v) is a omogeneous
polynomial of dgreenin &, 7, , satisfying Laplaces equation

%V .\ oV .\ oV

= 0.
0c2 g2 ar?




350 E. T. WHITTAKER

Next, let the variables be changed by the substitution

COSU =C0S# COSw + Sind Sinw COSV',
sinusin (@ — v) =sinw sinV',
sinucos ¢ — V) =sinw Sind — Sinw COSV' COSA,

so that p sinw cosV', p Sinw sinV', p cosw) are the co-ordinates of the poird, ¢, {)

referred to ne/ axes, the line whose direction-cosines are
(sin@ cosg, 9N 4 sing, cosA) being talken as the ne axis of z
Thus

2% 7
o0
V= ZJJe‘f €050y, v) sin o dew dV.
n=0

But a surce-harmonic of gnorder n remains a suaice-harmonic of ordem under
ary transformation of aas in which the origin is unchanged: and therelti@, v) is

a wrface harmonic of orderin » andv; and consequently it can bemanded in the
form

An(8, 9)P,(cosw) + AL(8, 9)Pi(cosw) cosV' + AZ(6, ¢)P3(cosw) cos &/
+- -+ A6, ) Pp(cosw) cosnV
+B,,(6, 9)P,(cosw) SNV +---+B"(8, )P (cosw) sinnV,

where A,(6,9),- -+, B](8,¢) are functions ofé and ¢. Substituting this alue for
Y,(u, V) in the intgral, and performing the irgeation with respect ta’, we have

T

V = Z Aq(6, ¢) ‘!’ e ©°S?p (cosw) sin w dw;
n=0

and in virtue of the relation*)

g M)
. . T = +—
J e" %P (cosw)sSnw dw = (5)2 V—rz :

this can be written in the form

V=2 2 (n)0,9)
0 2

where f, (0, ¢) denotes some function efandg.

*) A proof of this and seeral related results will be found in a paper shortly to be published
by the author
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Since the sudce-harmonic¥, (9, ¢) were independent of each othtiie functions
(6, ¢), will be indpendent of each other and therefore each of the quantities

r23 (1) fa(6,9)
2

will be a solution of the equation
0V 9V 9V
+ +
ox2 0y2 072

But on transforming this equation to polar co-ordinates, and substitutinggrese
sion

+V =0.

r23 11 (6, 9)
2

for V, we find that the functionf,(8, ¢) must satisfy the diérential equation for a
surface-harmonic i and ¢ of ordern. It follows that f,(6, ¢) can be gpanded in
the form

f,(0, ¢) = A,Pn(coss) + Al cospPL(cose) +- - -+ A, cosngPl(coss)
+ Bl singP?2(cosp) +- - -+ Bl sinngPN(coss),

and thughe particular solutions
rv 2Jn+ 1(r)P(cose)sy mg
2

are dbtained.
Moreover, it is dear from the abee poof thatin order to expand any solution

2r 7

V = JJ ei(xsinu COSV+Yy sinu sinv+z cosu) f (U V) sinu du av

of the equation

2 2 2
6V+6V+6V+V:0
0x2 0dy2 022
as a series of the form
(00]
Zr-1/23n+1(r)Yn(9,¢),
2

n=0
whee Y, is a surface-harmonic of der n ing and ¢, it is only necessary taxpand
the functionf (u, v) in surface-harmonics of u and v
4°. Expression of the solution of the equation
0V 0V 9V
+ +

0x2 0dy2 022

as a series of@nenlised Bessel functions.

+V =0
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Another analysis of the solutions of the equation
0V 9V 9V

+ +
ox2 0y2 072

entirely diferent from that gien in 3, can be found in the folleing way.
Consider the xgpression

+V =0,

ea X5 QDY -yt ),

if this expression be garded as a function afandt, it can for finite non-zeroalues
of sandt be expanded as a series of (pogtind n@dive) integral pavers ofs andt,
the coeficients in this series being functionsxafy andz. Let the codicient of the
term ins™t" be denoted by, ,(X, ¥, 2): so that we hae the relation

00 (o8]

1 1., 1 i 1 1 i 1
e I TPE I AT = F S g (%, Y, DS,

m=-o00 h=—o00
This equation can begaded as a generalisation of the equation

11 0

eéz(t—f)= Z J.(Dt",

N=—-o00

which defines the ordinary Bessel functions; and we shall consequently call the func-
tions Jnn(X, Y, 2) generalised Bessel functions

We row proceed to establish some properties of the functigngx, y, 2); it will
be seen that tlyeare very similar to those of the ordinary Bessel functions.

In the first place, since them@ession

V = e et~ g¥e =g+ (s )

satisfies the equation
vV 9V 9V
+ +
ox2 0y? 022
it follows thatead of the functionsl, ,(X, Y, z) satisfies the equation
vV 9V 9V
+ +
0x2 0y? 022

In the second place, we shall obtain &pression ford,, (X, Y, z) as a cfinite inte-
gral. ByLaurents theorem, we kne that the codicient of s in the expansion of

+V =0,

+V =0.

e DY )5 or)
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5

1 1 1 i 1 1, i
1 2SI U+ 5267 g

P S‘m_le
27l

whereC is ary simple contour in the-plane surrounding the origin; andaag apply-
ing Laurents theorem, the coéi€ient oft" in this expression is seen to be

1 1., 1 i 1. 1 i 1
4_12 J’ !’ L1 X I =YD+ 5257 g
T

whereD is ary smple contour in thé-plane surrounding the origin.
Now write s=€", t = €Y. Thuswe have theasult

2 2

1 o o o
Jm’n(x, Y, z) = EJ’J @ Miu-niv+ixsinucosv+y sinusinv+izcosuy | dy,

which may be egarded as the anafjue of Bessed'intggral

T

1
D)=~ I cos fiu— zsinu) du.

The functionsl, ,(X, Y, 2) likewise possess an additiontheorm: for weeha

01 (PS4 ) = (D)(s= =)+ 5 @5+ )

1 1 1 i 1 1 i 1
*X(S‘g)(“’f) - ZY(S‘E)('[‘*) *5 Z(5+g)

—e4 t
1 1 1 i 1 1 i 1
xeza(s_g)(t"'?) - Z,b(s_g)(t'f) + EC(S+§)

and so
Z Jnn(X+a,y+b,z+c)s"t"
m,n

= Z Jmn(X, Yy, 2)s™t" x Z Jmn(a b, c)smt",
m,n m,n

Equating codicients on both sides of this equatiare have theasult

00 00

Ima(X+2,y+5,2+0)= 2 2 3pq(X, ¥, DI png(a b,0)

p=—00 g=-00
which is the addition-theam for ggnerlised Bessel functionand is the analogue of
the well-knavn result

00

3n(z+0) = 2 Ip(DInp(©).

p=-co
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We dhall nov shew how the generalised Bessel functions furnish an analysis of the
general solution of the equation
o0V 9V 9V
+ +
ox2 0y2 072
For the general solution is, by,2

+V =0.

T 2

V = J'I ei(x,'~‘,inucos,v+ysinusinv+zcosu) f (U V) du dv

where f (u, v) can without loss of generality be &kto be a periodic function of
andv.

Now let the functionf (u, v) be expanded by thex¢ended form of Burier’s theo-
rem, in the form

00 00
f(U,V): z z am,neimu+inv.

M=—00 N=—o00
Then we hae

T 2
00 00

V = Z z am,n-[-[ ei(xsinucosv+ysinusinv+zcosu+mu+nv) du dv
- 00

m=—o0 N=

Comparing this with the form just found for the generalised Bessel functions, we see
thatthe generl solution of the equation

2V .\ 2V .\ 2V

ox2  0y? 072 *V=0

can be written

V= Z z amnImn(X Y, 2),

m=—o00 N=—o00

where the quantitiea,, , are arbitrary constantsChis furnishes an alternaé analy-
sis of the solution to that\gn in 2.

5°. Gravitation and Electrstatic Attaction plained as modes of ake-distur
bance

The result of 9, namely that ay solution of the equation

0V 9V vV _ L,V
+ + =k
ox2 0y2 0272 ot2
can be analysed into simple planaves, thravs a n& light on the nature of those
forces, such as graation and electrostatic attraction, whiclary as the ierse

square of the distancéor if a system of forces of this character be considered, their
potential (or their component inyagiven direction) satisfies the equation




On the diferential equations of pisics. 355

Vv .\ oV .\ oV

ox2  0y?2 072 =0.
and therefore fortiori it satisfies the equation
0oV 9V VvV _ ,0NV
+ + =k

0x2 0y? 0272 ot?

wherek is ary constant. Itfollows from 2 that this potential (or force-component)
can be analysed into simple planavas in various directions, eachavebeing prop-
acated with constantelocity. These vaves interfere with each other in such aw
that, when the action has once been set up, the disturbangepairdardoes not ary
with the time, and depends only on the coordinateg, £) of the point.

It is not difficult to construct, syntheticallygystems of codstent simple \aves,
having the property that the total disturbance at pmint (due to the sum of all the
waves) varies from point to point,ui does not ary with the time.A simple example
of such a system in the follang.

Suppose that a particle is emtting sphericaVas, such that the disturbance at a
distancer from the origin, at time, due to those aves whose vavelength lies be-

2
tween— and
2 ptdu

, IS represented by

2du sin (uVt — ur)
Tu r

whereV is the \elocity of propagtion of the vaves. Thenafter the vaves have
reached the point so that (V/t —r) is positive, the total disturbance at the point (due
to the sum of all the awves) is

_J’ 2du sin (uVt — ur)

U r

Take uVt — ur =y, wherey is a nev variable. Thenhis disturbance is

[¢¢]

5 )
2 smyOI ,
zr y
or, snce
siny , 7
[
itis

r

The total disturbance at any point, due to this system of waves, eothendepen-
dent of the timeand is eerywhee proportional to the gavitational potential due to
the patrticle at the point.
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It is clear from the forgoing that the field of force due to agtating body can be
analysed, by a spectrum analysis" as it were, into an infinite number of constituent
fields; and although the whole field of force does oy with the time, yeead of
the constituent fields is of an undulatohatacter consisting of a simple wave-dis-
turbance popagated with uniform velocityThis analysis of the field into constituent

1
fields can most easily be accomplished by analysing the pot?mfadeach attracting
particle into terms of the type
sin (uVt — ur)
r

as in the gample already gen. To each of these terms will correspond one of the
constituent fields.In each of these constituent fields the potential will be constant
along each wavefront, and consequently the giational force in each constituent
field will be perpendicular to theavefront, i.e. the waves will be longitudinal

But these results assimilate the pragdamn of graity to that of light: for the undu-
latory phenomena just described, in which theying \ector is a gratational force
perpendicular to the avefront, may be compared with the undulatory phenomena
made amiliar by the electromagnetic theory of light, in which tlaying \ectors
consist of electric and magnetic forces parallel to theedront. Thewaves ae in
other respectsxactly similar and it seems probable that an identical property of the
medium ensures their transmission through space.

This undulatory theory of gvély would require that graty should be propaged
with a finite \elocity, which havever need not be the same as that of light, and may
be enormously greater

Of course, this iwestigation does notxlain thecauseof gravity; all that is done
is to she&v that in order to account for the propdign across space of forces which
vary as the imerse square of the distance, wedanly to suppose that the medium is
capable of transmitting, with a definite thouglg&kelocity, smple periodic undula-
tory disturbances, similar to those whose prapiag by the medium constitutes, ac-
cording to the electromagnetic theatye transmission of light.




