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On the partial differential equations of mathematical physics.

By

E. T. WHITTAKER in Cambridge.

§ 1.

Introduction.

The object of this paper is the solution of Laplace’s potential equation

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0,

and of the general differential equation of wav e-motions

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= k2 ∂2V

∂t2
,

and of other equations derived from these.
In § 2, the general solution of the potential equation is found.
In § 3, a number of results are deduced from this, chiefly relating to particular solu-

tions of the equation, and expansions of the general solution in terms of them.
In § 4, the general solution of the differential equation of wav e-motions is given.
In § 5, a number of deductions from this general solution is given, including a theo-

rem to the effect that any solution of this equation can be compounded from simple
uniform plane wav es, and an undulatory explanation of the propagation of gravitation.

§ 1.

The general solution of the potential equation.

We shall first consider the equation

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0,

which was originally given by Laplace*).

*) Mémoire sur la theorie de l’anneau de Saturne, 1787.
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This equation is satisfied by the potential of any distribution of matter which at-
tracts according to the Newtonian Law. We shall first obtain a general form for poten-
tial-functions, and then shall shew that this form constitutes the general solution of
Laplace’s equation. >Fromthe identity

1

√ {( x − a)2 + (y − b)2 + (z − c)2}
=

1

2�

2�

0
∫ du

(z − c) + i(x − a) cosu + i(y − b) sin u
,

we see that the potential at any point (x, y, z) of a particle of massm, situated at the
point (a, b, c), is

m

2�

2�

0
∫ du

(z + ix cosu + iy sinu) − (c + ia cosu + ib sinu)

which, considered as a function ofx, y, z, is an expression of the type

2�

0
∫ f (z + ix cosu + iy sinu, u)du,

wheref denotes some function of the two arguments

z + ix cosu + iy sinu and u.

It follows that the potential of any number of particlesm1,m2,. . . ,mk, situated at the
points (a1b1c1), (a2b2c2), (a3b3c3), . . . , akbkck), is an expression of the type

2�

0
∫ { f1(z + ix cosu + iy sinu, u) + f2(z + ix cosu + iy sinu, u)

+ fk(z + ix cosu + iy sinu, u) } du

or

2�

0
∫ f (z + ix cosu + iy sinu, u) du,

wheref is a new function of the two arguments

z+ ix cosu + iy sinu and u.

In this way we see thatthe potential of any distribution of matter which attracts ac-
cording to the Newtonian Law can be represented by an expression of the type

2�

0
∫ f (z + ix cosu + iy sinu, u)du.
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The question now naturally suggests itself, whether the most general solution of
Laplace’s equation can be represented by an expression of this type.We shall shew
that the answer to this is in the affirmative.

For letV(x, y, z) be any solution (single-valued or many-valued) of the equation

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0,

Let (x0, y0, z0) be some point at which some branch of the functionV(x, y, z) is regu-
lar. Then if we write

x = x0 + X, y = y0 + Y, z = z0 + Z

it follows that for all points situated within a finite domain surrounding the point
(x0, y0, z0), this branch of the functionV(x, y, z) can be expanded in an absolutely and
uniformly convergent series of the form

V = a0 + a1X + b1Y + c1Z + a2X2 + b2Y
2 + c2Z2 + d2YZ

+ e2ZX + f2XY+ a3X3 + . . . .

Substituting this expansion in Laplace’s equation, which can be written

∂2V

∂X2
+

∂2V

∂Y2
+

∂2V

∂Z2
= 0,

and equating to zero the coefficients of the various powers ofX,Y, and Z, we may ob-
tain an infinite number of linear relations, namely

a2 + b2 + c2 = 0, etc.

between the constants in the expansion.

There are
1

2
n(n − 1) of these relations between the

1

2
(n + 1)(n + 2) coefficients of

the terms of any degree n in the expansion of V; so that only




1

2
(n + 1)(n + 2) −

1

2
n(n − 1)





or (2n + 1) of the coefficients of terms of degreen in

the expansion ofV are really independent.It follows that the terms of degreen in V
must be a linear combination of (2n + 1) linearly independent particular solutions of
Laplace’s equation, which are of degreen in X,Y, Z.

To find these solutions, consider the expansion of the quantity

(Z + iX cosu + iY sinu)n

as a sum of sines and cosines of multiples ofu, in the form

(Z + iX cosu + iY sinu)n = g0(X,Y, Z) + g1(X,Y, Z) cosu
+ g2(X,Y, Z) cos 2u + . . .+ gn(X,Y, Z) cosnu
+ h1(X,Y, Z) sin u + h2(X,Y, Z) sin 2u + . . .

+ hn(X,Y, Z) sin nu.
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Now gm(X,Y, Z) and hm(X,Y, Z) are together characterised by the fact that the high-
est power of Z contained in them isZn−m; moreover gm(X,Y, Z) is an even function
of Y, whereashm(X,Y, Z) is an odd function ofY; and hence the (2n + 1) quantities

g0(X,Y, Z), g1(X,Y, Z), . . . ,hn(X,Y, Z)

are linearly independent of each other; and they are clearly homogeneous polynomials
of degreen in X,Y, Z; and each of them satisfies Laplace’s equation, since the quanti-
ty (Z + iX cosu + iY sinu)n does so.They may therefore be taken as the (2n + 1) lin-
early independent solutions of degreen of Laplace’s equation.

Now since by Fourier’s Theorem we have the relations

gm(X,Y, Z) =
1
�

2�

0
∫ (Z + iX cosu + iY sinu)n cosmu du,

hm(X,Y, Z) =
1
�

2�

0
∫ (Z + iX cosu + iY sinu)n sinmu du,

it follows that each of these (2n + 1) solutions can be expressed in the form

2�

0
∫ f (Z + iX cosu + iY sinu, u) du

and therefore any linear combination of these (2n + 1) solutions can be expressed in
this form. That is, the terms of any degreen in the expansion ofV can be expressed in
this form; and thereforeV itself can be expressed in the form

2�

0
∫ F(Z + iX cosu + iY sinu, u)du

or

2�

0
∫ F(z + ix cosu + iy sinu − z0 − ix0 cosu − iy0 sinu, u)du,

or

2�

0
∫ f (z + ix cosu + iy sinu, u)du,

since thez0 + ix0 cosu + iy sinu can be absorbed into the second argumentu.
Now V was taken to be any solution of Laplace’s equation, with no restriction be-

yond the assumption that some branch of it was at some
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point a regular function — an assumption which is always tacitly made in the solution
of differential equations; and thus we have the result, thatthe general solution of
Laplace’s equation

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0,

is

V =

2�

0
∫ f (z + ix cosu + iy sinu, u) du,

where f is an arbitrary function of the two arguments

z+ ix cosu + iy sinu and u.

Moreover, it is clear from the proof that no generality is lost by supposing thatf is a
periodic function ofu.

This Theorem is the three-dimensional analogue of the theorem that the general so-
lution of the equation

∂2V

∂x2
+

∂2V

∂y2
= 0

is
V = f (x + iy) + g(x − iy).

§ 1.

Deductions from the Theorem of § 2; Particular Solutions;
Expansions of the General Solution.

10. Interpretation of the solution.We may give to the general solution just ob-
tained a concrete interpretation, as follows.

Since a definite integral can be regarded as the limit of a sum, we can regard V as
the sum of an infinite number of terms, each of the type

Vr = fr (z + ix cosur + iy sinur )

each term corresponding to some value ofur .
But this term is a solution of the equation

∂2Vr

∂X2
r

+
∂2Vr

∂Z2
r

= 0,

where
Xr = x cosur + y sinur ,

Yr = − x sinur + y cosur ,

Zr = z,

so that (Xr , Yr , Zr ) represent coordinates derived from (x, y, z) by a rotation of the
axes through and angleur round the axis ofz.
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Thus we see thatthe general solution of Laplace’s equation can be regarded as the
sum of an infinite number of elementary constituentsVr , each constituent being the
solution of an equation

∂2Vr

∂X2
r

+
∂2Vr

∂Z2
r

= 0,

and the axes (Xr , Yr , Zr ) being derived from the axes (x, y, z) by a simple rotation
round the axis ofz.

20. The particular solutions in terms of Legendre functions. It is interesting to see
how the well-known particular solutions of Laplace’s equation in terms of Legendre
functions can be obtained as a case of the solution given in § 2.

The particular solutions in question are of the form

r nPm
n (cos

�
) cosm� and r nPm

n (cos
�
) sin m�

(n = 0, 1, 2,. . . , ∞; m = 0, 1, 2,. . . , n),

where (r ,
�
, � ) are the polar coordinates corresponding to the rectangular coordinates

(x, y, z), and where

Pm
n (cos

�
) =

(−1)m sinm �

2nn!

dn+m(sin2n � )
d(cos

�
)n+m

.

Now the functionPm
n (cos

�
) can be expressed by the integral

Pm
n (cos

�
) =

(n + m)(n + m − 1) . . .(n + 1)
� (−1)m/2

2�

0
∫ (cos

� + i sin
�

cos	 )n cosm	 d 	 ,

and thus we have

r nPm
n (cos

�
) cos m� =

(n + m)(n + m − 1) . . .(n + 1)
� (−1)m/2

2�

0
∫ (z + i√ (x2 + y2) cos 	 )n

cosm	 cosm� d 	

=
(n + m)(n + m − 1) . . .(n + 1)

2� (−1)m/2

2�

0
∫ (z + i√ x2 + y2 cos 	 )n cosm( 	 − � )d 	

=
(n + m)(n + m − 1) . . .(n + 1)

2� (−1)m/2

2�

0
∫ (z + ix cosu + iy sinu)n cosmu du.

We see therefore thatthe solutionr nPm
n (cos

�
) cosm� is a numerical multiple of

2�

0
∫ (z + ix cosu + iy sinu)n cosmu du.
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Similarly the solutionr nPm
n (cos 
 ) sin m� is a numerical multiple of

2�

0
∫ (z + ix cosu + iy sinu)n sinmu du.

>From this it is clear thatin order to express any solution

2�

0
∫ f (z+ ix cosu + iy sinu, u) du

of Laplace’s equation, as a series of harmonic terms of the form

r nPm
n (cos 
 ) cosm� and rnPm

n (cos 
 ) sin m� ,
it is only necessary to expand the function f as a Taylor series with respect to the first
argument z+ ix cosu + iy sinu, and as a Fourier series with respect to the second ar-
gument u.

As an example of this procedure, we shall suppose it required to find the potential
of a prolate spheroid in the form

2�

0
∫ f (z + ix cosu + iy sinu, u) du,

and to expand this potential as a series of harmonics.Let

x2 + y2

a2
+

z2

c2
= 0

be the equation of the surface of the spheroid; and suppose that it is a homogeneous
attracting body of massM. To find its potential, we can make use of the theorem that
the potential at external points is the same as that of a rod joining the foci, of line-den-

sity 3M(c2 − a2 − z2)

4(c2 − a2)3/2
; that is, it is

3M

8 (c2 − a2)3/2

2�

0
∫ du

√ c2−a2

−√ c2−a2

∫ (c2 − a2 − � 2)d �
z − � + ix cosu + iy sinu

or

3M

8 (c − a)3/2

2�

0
∫ 



(c2 − a2 − B2) log

B + √ c2 − a2

B − √ c2 − a2
+ 2√ c2 − a2B





du,

where B is written forz+ ix cosu + iy sinu.

Expanding the integrand in ascending powers of
1

B
, we hav e the potential in the

form

3M

2

2�

0
∫ 




1

1 ⋅ 3 ⋅ B
+

c2 − a2

3 ⋅ 5 ⋅ B3
+

(c2 − a2)2

5 ⋅ 7 ⋅ B5
+ . . .





du.
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Since

1

2�

2�

0
∫ du

Bn+1
=

Pn(cos� )
r n+1

,

this gives the required expansion of the potentialof the spheroid in Legendre func-
tions, namely the series

3M




1

1 ⋅ 3r
+

(c2 − a2)P2(cos� )
3 ⋅ 5 ⋅ r 3

+
(c2 − a2)2P4(cos� )

5 ⋅ 7 ⋅ r 5
+ . . .




.

This result may be extended to the case of the potential of an ellipsoid with three un-
equal axes, by using a formula for the potential of an ellipsoid given by Laguerre*)

30. The particular solutions of Laplace’s equation which involve Bessel functions.
We shall next shew how the well-known particular solutions of Laplace’s equation in
terms of Bessel functions can be obtained as a case of the general solution.The par-
ticular solutions in question are of the form

ekzJm(k � ) cosm� and ekzJm(k � ) sin m� ,
wherek andm are constants, andz, � , � are the cylindrical co-ordinates correspond-
ing to the rectangular co-ordinatesx, y, z, so that

x = � cos� , y = � sin � .
Now if in the solution

ekzJm(k � ) cosm�
we replaceJm(k � ) by its value

Jm(k � ) =
1

�

�

0
∫ cos (m� − k � sin � ) d � ,

we find after a few simple transformations that

ekzJm(k � ) cosm� =
(−1)m/2

2�

2�

0
∫ ek(z+ix cosu+iy sinu) cosmu du.

The other solutions which involve sin m� , can be similarly expressed: we see there-
fore thatthe solutions

ekzJm(k � ) cosm� and ekzJm(k � ) sin m� ,

*) C. R., 1878.
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are numerical multiples of

2�

0
∫ ek(z+ix cosu+iy sinu) cosmu du.

and

2�

0
∫ ek(z+ix cosu+iy sinu) sinmu du.

respectively. It follows from this thatin order to express any solution

2�

0
∫ f (z+ ix cosu + iy sinu, u) du

of Laplace’s equation as a sum of terms of the form

ekzJm(k � ) cosm� and ekzJm(k � ) sin m� ,
it is only necessary to expand the function f in terms of the exponentials of its first ar-
gument z+ ix cosu + iy sinu, and as a Fourier series with respect to its second argu-
ment u.

As an example of the use which may be made of these results, we shall suppose it
required to express the potential-function

V = 1+ e−zJ0( � ) + e−2zJ0(2� ) + e−3zJ0(3� ) + . . .

(wherez is supposed positive) as a series of harmonic terms of the type involving Leg-
endre functions: and also to find a distribution of attracting matter of which this in the
potential. Thiscan be done in the following way. We hav e

V = 1+ e−zJ0( � ) + e−2zJ0(2� ) + e−3zJ0(3� ) + . . .

=
1

2�

2�

0
∫ {1 + e−z−ix cosu−iy sinu + e−2(z+ix cosu+iy sinu) + . . .} du

=
1

2�

2�

0
∫ du

1 − e−(z+ix cosu+iy sinu)
.

But if t be any variable different from zero, and such that " t "ˆ<ˆ 2 pi , we hav e

1

1 − et
= −

1

t
+

1

2
− B1

t

2!
+ B2

t3

4!
− B3

t5

6!
+ . . . ,

whereB1, B2, are Bernoulli’s numbers. Therefore,so long asz is positive and " z ˆ+ˆ
ix ˆcosˆu ˆ+ˆ iy ˆsinˆu "̂ <ˆ 2 pi i.e, so long asz is positive and x2 + y2 + z2 < 4� 2 we
have
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V =
1

2�

2�

0
∫ 




1

z+ ix cosu + iy sinu
+

1

2
+

B1

2!
(z+ ix cosu + iy sinu) + . . .





du

or

V =
1

r
+

1

2
−

B1

2!
rP1(cos� ) −

B2

4!
r 3P2(cos� ) +

B3

6!
r 5P5(cos� ) + . . .

and this is the required expansion of V as a series of harmonics involving Legendre
functions.

Next, since

1

1 − e−z
=

1

2
+

1

z
+

∞

n=1
Σ 1

z + 2ni � +
1

z − 2ni � ,

we have

V =
1

2�

2�

0
∫ du





1

2
+

1

z + ix cosu + iy sinu
+

∞

n=1
Σ 




1

z + ix cosu + iy sinu + 2ni �

+
1

z + ix cosu + iy sinu − 2ni �







,

or

V =
1

2
+

1

√ x2 + y2 + z2
+

∞

n=1
Σ 




1

√ x2 + y2 + (z + 2ni � )2
+

1

√ x2 + y2 + (z − 2ni � )2




,

and thereforeV can be regarded as the potential due to a set of attracting masses
placed at equal imaginary intervals2i � along the axis of z.

§ 1.

The differential equation
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= k2 ∂2V

∂t2
.

We shall next consider the general differential equation of wav e-motions,

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= k2 ∂2V

∂t2
,

wherek is a constant.
Writing kt for t, this becomes

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
=

∂2V

∂t2
,

which we shall take for the present as the standard form of the equation.
In order to find the general solution of this equation, we follow a procedure analo-

gous to that of § 2.Let V(x, y, z, t) be any solution (single-valued or many-valued) of
the equation; and let (x0, y0, z0, t0) be a
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place at which some branch of the functionV is regular. Then if we write
x = x0 + X, y = y0 + Y, z = z0 + Z, t = t0 + T, it will be possible to expand this
branch of the functionV as a power-series of the form

V = a0 + a1X + b1Y + c1Z + d1T + a2X2 + b2Y
2 + c2Z2 + d2T

2 + e2XY
+ f2XZ + g2XT + h2YZ+ k2YT+ l2ZT + a3X3 + . . . ,

which will be absolutely and uniformly convergent for a certain finite domain of val-
ues ofX,Y, Z,T. Substituting this expansion in the differential equation, which may
be written

∂2V

∂X2
+

∂2V

∂Y2
+

∂2V

∂Z2
=

∂2V

∂T2
,

and equating to zero the coefficients of various powers of X,Y and Z, we obtain an
infinite number of linear relations, namely

a2 + b2 + c2 = d2, etc.,

between the constants in the expansion. Thereare
1

6
(n − 1) n (n + 1) of these rela-

tions between the
1

6
(n + 1) (n + 2) (n + 3) coefficients of terms of any degreen in the

expansion ofV; so that only

1

6
{( n + 1) (n + 2) (n + 3)− (n − 1) n (n + 1)}

or
(n + 1)2

of the coefficients of terms of degreen in the expansion ofV are really independent.
It follows that the terms of degreen in V must be a linear combination of (n + 1)2 lin-
early independent particular solutions of degreen in X,Y, Z,T.

To find these solutions, consider the expansion of the quantity

(X sinucosv + Y sinusinv + Z cosu + T)n.

If we first take the expansion in the form

g0 + g1 cosv + g2 cos 2v + . . .+ gn cosnv,
+ h1 sinv + h2 sin 2v + . . .+ hn sinnv,

we have seen in § 2 thatg0, g1, . . . , gn, h1, . . . , hn, are linearly independent functions
of X,Y, Z, and T. Moreover, gm andhm are of the form sinm u × a polynomial of de-
gree (n − m) in cosu, and therefore each of them contains (n − m + 1) independent
polynomials in X,Y, Z,T. Thus the total number of independent polynomials in
X,Y, Z,T, in the expansion of

(X sinucosv + Y sinusinv + Z cosu + T)n
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in sines and cosines of multiples ofu andv, is

(n + 1)+ 2n + 2(n − 1)+ 2(n − 2)+ . . .+ 2
or

(n + 1)2.

Now each of these polynomials must satisfy the equation

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
=

∂2V

∂t2
,

since the quantity

(X sinucosv + Y sinusinv + Z cosu + T)n

does so: and therefore they may be taken as the (n + 1)2 linearly independent solutions
of the equation

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
=

∂2V

∂t2
,

which are homogeneous of degree n in X,Y, Z,T. Now by Fourier’s theorem we
have

gm =
1
�

2�

0
∫ (X sinucosv + Y sinusinv + Z cosu + T)n cosmv dv;

and sincegm is of the form
n−m

r=0
Σ ur sinm ucosr u,

whereur is one of the polynomials in question, it is clear thatgm can be expressed as
a sum of sines or cosines of multiples ofu, according asm is even or odd; and the co-
efficient of one of these sines or cosines, say of cossu, is

2
�

�

0
∫ gm cossu du.

It follows that each of the polynomialsur can be expressed in the form
�

0
∫ gm f (u)du,

where f (u) denotes some periodic function ofu; that is, it can be expressed in the
form

2�

0
∫
�

0
∫ (X sinucosv + Y sinusinv + Z cosu + T)n f (u) cosmv dudv.
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It follows from this that each of the (n + 1)2 polynomial solution of degreen can be
expressed in the form

2�

0
∫
�

0
∫ (X sinucosv + Y sinusinv + Z cosu + T)n f (u, v) du dv,

where f (u, v) denotes some periodic function ofu andv; and therefore the terms of
degreen in V can be expressed in this form.

The functionV itself can therefore be expressed in the form

2�

0
∫
�

0
∫ f (X sinucosv + Y sinusinv + Z cosu + T, u, v) du dv,

wheref denotes some function of the three arguments

X sinucosv + Y sinusinv + Z cosu + T, u, and v;

andf may without loss of generality be supposed to be periodic inu andv.
Now

X sinucosv + Y sinusinv + Z cosu + T

= (x sinucosv + y sinusinv + zcosu + t)

− (x0 sinucosv + y0 sinusinv + z0 cosu + t0);
and the termo

(x0 sinucosv + y0 sinusinv + z0 cosu + t0)

can be absorbed into the argumentsu andv; moreover V was taken to be any solution

of the partial differential equation; we have, therefore, on writing
t

k
for t, the result

thatthe general solution of the partial differential equation of wave-motions,

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= k2 ∂2V

∂t2
,

is

V =

2�

0
∫
�

0
∫ f (x sinucosv + y sinusinv + zcosu +

t

k
, u, v) du dv,

where f is an arbitrary function of the three arguments

x sinucosv + y sinusinv + zcosu +
t

k
, u and v.
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§ 1.

Deductions from the general solution of § 4.

10. The analysis of wave-motions.We shall now deduce from the general solution
thus obtained a result relating the analysis of those phenomena which are represented
by solutions of the equation

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= k2 ∂2V

∂t2
.

If we revert to the fundamental idea of the definite integral as the limit of a sum of an
infinite number of terms, we see that the general solution

V =

2�

0
∫
�

0
∫ f (x sinucosv + y sinusinv + zcosu +

t

k
, u, v) du dv,

can be interpreted as meaning thatV is the sum of an infinite number of terms of the
type

f (x sinucosv + y sinusinv + zcosu +
t

k
, u, v),

there being one of these terms corresponding to every direction in space given by the
direction-cosines

sinucosv, sin usinv, cosu.

The solutionV can therefore be regarded as the sum of constituent solutions, each of
the type

F(x sinucosv + y sinusinv + zcosu +
t

k
)

where the functionF varies from one direction (u, v) to another.
Now let us fix our attention on one of these constituent solutionsF. If for some

range of values of the quantity

x sinucosv + y sinusinv + zcosu +
t

k
,

the functionF is finite and continuous, we can for this range of values expressF by
Fourier’s integral formula in the form

1
�

∞

0
∫ d  

b

a
∫ F( ! ) cos {  (x sinucosv + y sinusinv + zcosu +

t

k
) −  "! } d  d ! ,

wherea andb are the terminals of this range of values; or supposing the integration
with respect to! to be performed,

∞

0
∫ g(  )cos

sin {  (x sinucosv + y sinusinv + zcosu +
t

k
)} d  ,

whereg(  ) denotes some function of .
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Now let us again revert to the idea of the definite integral as the limit of a sum.
Then this latter integral can be regarded as the sum of an infinite number of terms of
the type

cos
sin { # (x sinucosv + y sinusinv + zcosu +

t

k
)},

each term being multiplied by some factor depending on# .
The solutionV can therefore be regarded as constituted by the superpostion of

terms of this last type.But a term of this type represents asimple uniform plane
wave; for on transforming the axes so that the new axis of x is the line whose direc-
tion-cosines are

sinucosv, sin usinv, cosu,

the term becomes
cos
sin # (x +

t

k
),

which represents a simple plane wav ewhose direction of propagation is the new axis
of x. We see therfore thatthe general finite solution of the differential equation of
wave-motions,

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= k2 ∂2V

∂t2

can be analysed into simple plane waves, represented by terms of the type

F( # , u, v)cos
sin{ # (x sinucosv + y sinusinv + zcosu +

t

k
)}.

It is interesting to observe that Dr. Johnstone Stoney in 1897*) shewed by physical
reasoning, and without any reference to the equation

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= k2 ∂2V

∂t2
.

that all the disturbance of the luminiferous ether arising from sources of certain kinds
can be resolved into trains of plane wav es.

20. Solution of the equation

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
+ V = 0.

If a solutionW of the equation

∂2W

∂x2
+

∂2W

∂y2
+

∂2W

∂z2
=

∂2W

∂t2

be of the formVeit , whereV is a function ofx, y, z only, which does not involve t,
thenV clearly satisfies the equation

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
+ V = 0,

*) Philosoph. Magazine, (V) XLIII.
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and therefore, on reference to the general solution of the wav e-motion equation found
in § 4, we see thatthe general solution of the equation

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
+ V = 0

is

V =

2$

0
∫
$

0
∫ ei(x sinucosv+y sinusinv+zcosu) f (u, v) du dv.

30. Deduction of the known particular solutions of the equation

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
+ V = 0.

It is known that particular solutions of the equation

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
+ V = 0

exist, which are of the form

V = r
−

1

2 J
n+

1

2

(r )Pm
n (cos% )cos

sin m&
(n = 0, 1, 2,. . . ; m = 0, 1, 2,. . . , n),

wherer , % , & are the polar coordinates corresponding tox, y, z. We shall now shew
how these may be derived from the general solution of the equation which has just
been found.

For let the general soution be written in the form

V =

2$

0
∫
$

0
∫ ei(x sinucosv+y sinusinv+zcosu) f (u, v) sin u du dv,

where f (u, v) is an arbitrary function of the two argumentsu andv, which may with-
out loss of generality be taken to be periodic inu andv.

Now let the functionf (u, v) be expanded in surface-harmonics ofu andv, so that

V =
∞

n=0
Σ

2$

0
∫
$

0
∫ ei(x sinucosv+y sinusinv+zcosu)Yn(u, v) sin u du dv

whereYn is a surface-harmonic of ordern, i.e., if
'

= ( sinucosv, ) = ( sinusinv, * = ( cosu,
are regarded as the co-ordinates of a point in space, then( nYn(u, v) is a homogeneous
polynomial of degreen in

'
, ) , * , satisfying Laplace’s equation

∂2V

∂
'

2
+

∂2V

∂ ) 2
+

∂2V

∂ * 2
= 0.
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Next, let the variables be changed by the substitution

cosu = cos+ cos, + sin + sin , cosv′,
sinusin (- − v) = sin , sinv′,
sinucos (- − v) = sin , sin + − sin , cosv′ cos+ ,

so that (. sin , cosv′, . sin , sinv′, . cos, ) are the co-ordinates of the point (/ , 0 , 1 )
referred to new axes, the line whose direction-cosines are
(sin + cos- , sin + sin - , cos + ) being taken as the new axis of z.

Thus

V =
∞

n=0
Σ

22

0
∫
2

0
∫ eir cos3 Yn(u, v) sin , d , dv′.

But a surface-harmonic of any order n remains a surface-harmonic of ordern under
any transformation of axes in which the origin is unchanged: and thereforeYn(u, v) is
a surface harmonic of ordern in , andv; and consequently it can be expanded in the
form

An( + , - )Pn(cos , ) + A1
n( + , - )P1

n(cos , ) cosv′ + A2
n( + , - )P2

n(cos , ) cos 2v′

+ . . . + An
n( + , - )Pn

n(cos , ) cosnv′

+ B′
n( + , - )P′

n(cos , ) sin v′ + . . . + Bn
n( + , - )Pn

n(cos , ) sin nv′,

where An( + , - ), . . . , Bn
n( + , - ) are functions of + and - . Substituting this value for

Yn(u, v) in the integral, and performing the integration with respect tov′, we hav e

V =
∞

n=0
Σ An( + , - )

2

0
∫ eir cos3 Pn(cos, ) sin , d , ;

and in virtue of the relation*)
2

0
∫ eir cos3 Pn(cos, ) sin , d , = (

4
2

)
1

2

i nJ
n+

1

2

(r )

√r
,

this can be written in the form

V =
∞

0
Σ r −1/2J

n+
1

2

(r ) fn( + , - )

where fn( + , - ) denotes some function of+ and - .

*) A proof of this and several related results will be found in a paper shortly to be published

by the author.
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Since the surface-harmonicsYn( 5 , 6 ) were independent of each other, the functions
fn( 5 , 6 ), will be indpendent of each other and therefore each of the quantities

r −1/2J
n+

1

2

(r ) fn( 5 , 6 )

will be a solution of the equation

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
+ V = 0.

But on transforming this equation to polar co-ordinates, and substituting the expres-
sion

r −1/2J
n+

1

2

(r ) fn( 5 , 6 )

for V, we find that the functionfn( 5 , 6 ) must satisfy the differential equation for a
surface-harmonic in5 and 6 of ordern. It follows that fn( 5 , 6 ) can be expanded in
the form

fn( 5 , 6 ) = AnPn(cos5 ) + A1
n cos6 P1

n(cos5 ) + . . .+ An cosn 6 Pn
n(cos5 )

+ B1
n sin 6 P2

n(cos5 ) + . . .+ Bn
n sinn 6 Pn

n(cos5 ),
and thusthe particular solutions

r −1/2J
n+

1

2

(r )Pm
n (cos5 )cos

sin m6
are obtained.

Moreover, it is clear from the above proof thatin order to expand any solution

V =

27

0
∫
7

0
∫ ei(x sinucosv+y sinusinv+zcosu) f (u, v) sin u du dv

of the equation
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
+ V = 0

as a series of the form
∞

n=0
Σ r −1/2J

n+
1

2

(r )Yn( 5 , 6 ),

where Yn is a surface-harmonic of order n in 5 and 6 , it is only necessary to expand
the functionf (u, v) in surface-harmonics of u and v.

40. Expression of the solution of the equation

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
+ V = 0

as a series of generalised Bessel functions.
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Another analysis of the solutions of the equation

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
+ V = 0,

entirely different from that given in 30, can be found in the following way.
Consider the expression

e
1

4
x(s−

1

s
)(t+

1

t
) −

i

4
y(s−

1

s
)(t−

1

t
) +

i

2
z(s+

1

s
)
;

if this expression be regarded as a function ofs andt, it can for finite non-zero values
of s andt be expanded as a series of (positive and negative) integral powers ofs andt,
the coefficients in this series being functions ofx, y andz. Let the coefficient of the
term insmtn be denoted byJm,n(x, y, z): so that we have the relation

e
1

4
x(s−

1

s
)(t+

1

t
) −

i

4
y(s−

1

s
)(t−

1

t
) +

i

2
z(s+

1

s
) =

∞

m=− ∞
Σ

∞

n=− ∞
Σ Jm,n(x, y, z)smtn.

This equation can be regarded as a generalisation of the equation

e
1

2
z(t−

1

t
) =

∞

n=− ∞
Σ Jn(z)tn,

which defines the ordinary Bessel functions; and we shall consequently call the func-
tionsJm,n(x, y, z) generalised Bessel functions.

We now proceed to establish some properties of the functionsJm,n(x, y, z); it will
be seen that they are very similar to those of the ordinary Bessel functions.

In the first place, since the expression

V = e
1

4
x(s−

1

s
)(t+

1

t
) −

i

4
y(s−

1

s
)(t−

1

t
) +

i

2
z(s+

1

s
)

satisfies the equation

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
+ V = 0,

it follows thateach of the functionsJm,n(x, y, z) satisfies the equation

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
+ V = 0.

In the second place, we shall obtain an expression forJm,n(x, y, z) as a definite inte-
gral. ByLaurent’s theorem, we know that the coefficient of sm in the expansion of

e
1

4
x(s−

1

s
)(t+

1

t
)−

i

4
y(s−

1

s
)(t−

1

t
)+

i

2
z(s+

1

s
)

is
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1

28 i
C
∫ S−m−1e

1

4
x(s−

1

s
)(t+

1

t
) −

i

4
y(s−

1

s
)(t−

1

t
) +

i

2
z(s+

1

s
)
ds,

whereC is any simple contour in thes-plane surrounding the origin; and again apply-
ing Laurent’s theorem, the coefficient of tn in this expression is seen to be

1

48 2

C
∫

D
∫ s−m−1t−n−1e

1

4
x(s−

1

s
)(t+

1

t
) −

i

4
y(s−

1

s
)(t−

1

t
) +

i

2
z(s+

1

s
)
ds dt,

whereD is any simple contour in thet-plane surrounding the origin.
Now write s = eiu, t = eiv. Thuswe have the result

Jm,n(x, y, z) =
1

48

29

0
∫

29

0
∫ e−m i  u−n i  v+ix sinucosv+iy sinusinv+iz cosudu dv,

which may be regarded as the analogue of Bessel’s integral

Jn(z) =
1

8

9

0
∫ cos (nu − zsinu) du.

The functionsJm,n(x, y, z) likewise possess an additiontheorm: for we have

e
1

4
(x+a)(s−

1

s
)(t+

1

t
) −

i

4
(y+b)(s−

1

s
)(t−

1

t
) +

i

2
(z+c)(s+

1

s
)

= e
1

4
x(s−

1

s
)(t+

1

t
) −

i

4
y(s−

1

s
)(t−

1

t
) +

i

2
z(s+

1

s
)

×e
1

4
a(s−

1

s
)(t+

1

t
) −

i

4
b(s−

1

s
)(t−

1

t
) +

i

2
c(s+

1

s
)

and so

m,n
Σ Jm,n(x + a, y + b, z + c)smtn

=
m,n
Σ Jm,n(x, y, z)smtn ×

m,n
Σ Jm,n(a, b, c)smtn.

Equating coefficients on both sides of this equation,we have the result

Jm,n(x + a, y + b, z + c) =
∞

p=− ∞
Σ

∞

q=− ∞
Σ Jp,q(x, y, z)Jm−p,n−q(a, b, c),

which is the addition-theorem for generalised Bessel functions, and is the analogue of
the well-known result

Jn(z + c) =
∞

p=− ∞
Σ Jp(z)Jn−p(c).
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We shall now shew how the generalised Bessel functions furnish an analysis of the
general solution of the equation

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
+ V = 0.

For the general solution is, by 20,

V =

:

0
∫

2:

0
∫ ei(x sinucosv+y sinusinv+zcosu) f (u, v) du dv,

where f (u, v) can without loss of generality be taken to be a periodic function ofu
andv.

Now let the functionf (u, v) be expanded by the extended form of Fourier’s theo-
rem, in the form

f (u, v) =
∞

m=− ∞
Σ

∞

n=− ∞
Σ am,nei mu+i n v.

Then we have

V =
∞

m=− ∞
Σ

∞

n=− ∞
Σ am,n

:

0
∫

2:

0
∫ ei(x sinucosv+y sinusinv+zcosu+mu+nv) du dv.

Comparing this with the form just found for the generalised Bessel functions, we see
thatthe general solution of the equation

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
+ V = 0.

can be written

V =
∞

m=− ∞
Σ

∞

n=− ∞
Σ am,nJm,n(x, y, z),

where the quantitiesam,n are arbitrary constants.This furnishes an alternative analy-
sis of the solution to that given in 20.

50. Gravitation and Electrostatic Attraction explained as modes of Wave-distur-
bance.

The result of 10, namely that any solution of the equation

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= k2 ∂2V

∂t2

can be analysed into simple plane wav es, throws a new light on the nature of those
forces, such as gravitation and electrostatic attraction, which vary as the inverse
square of the distance.For if a system of forces of this character be considered, their
potential (or their component in any giv en direction) satisfies the equation
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∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0.

and thereforeà fortiori it satisfies the equation

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= k2 ∂2V

∂t2

wherek is any constant. Itfollows from 10 that this potential (or force-component)
can be analysed into simple plane wav es in various directions, each wav ebeing prop-
agated with constant velocity. These wav es interfere with each other in such a way
that, when the action has once been set up, the disturbance at any point does not vary
with the time, and depends only on the coordinates (x, y, z) of the point.

It is not difficult to construct, synthetically, systems of coexistent simple wav es,
having the property that the total disturbance at any point (due to the sum of all the
waves) varies from point to point, but does not vary with the time.A simple example
of such a system in the following.

Suppose that a particle is emtting spherical wav es, such that the disturbance at a
distancer from the origin, at timet, due to those wav es whose wav e-length lies be-

tween
2;
< and

2;
< + d < , is represented by

2d <
; <

sin (< Vt − < r )

r

where V is the velocity of propagation of the wav es. Thenafter the wav es hav e
reached the pointr, so that (Vt − r ) is positive, the total disturbance at the point (due
to the sum of all the wav es) is

∞

0
∫ 2d <
; <

sin (< Vt − < r )

r
.

Take < Vt − < r = y, wherey is a new variable. Thenthis disturbance is

2

; r

∞

0
∫ siny

y
dy;

or, since
∞

0
∫ siny

y
dy =

;
2

,

it is
1

r
.

The total disturbance at any point, due to this system of waves, is therefore indepen-
dent of the time, and is everywhere proportional to the gravitational potential due to
the particle at the point.
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It is clear from the foregoing that the field of force due to a gravitating body can be
analysed, by a spectrum analysis" as it were, into an infinite number of constituent
fields; and although the whole field of force does not vary with the time, yeteach of
the constituent fields is of an undulatory character, consisting of a simple wave-dis-
turbance propagated with uniform velocity. This analysis of the field into constituent

fields can most easily be accomplished by analysing the potential
1

r
of each attracting

particle into terms of the type

sin (= Vt − = r )

r

as in the example already given. To each of these terms will correspond one of the
constituent fields.In each of these constituent fields the potential will be constant
along each wav e-front, and consequently the gravitational force in each constituent
field will be perpendicular to the wav e-front, i.e. the waves will be longitudinal.

But these results assimilate the propagation of gravity to that of light: for the undu-
latory phenomena just described, in which the varying vector is a gravitational force
perpendicular to the wav e-front, may be compared with the undulatory phenomena
made familiar by the electromagnetic theory of light, in which the varying vectors
consist of electric and magnetic forces parallel to the wav e-front. Thewaves are in
other respects exactly similar, and it seems probable that an identical property of the
medium ensures their transmission through space.

This undulatory theory of gravity would require that gravity should be propaged
with a finite velocity, which however need not be the same as that of light, and may
be enormously greater.

Of course, this investigation does not explain thecauseof gravity; all that is done
is to shew that in order to account for the propagation across space of forces which
vary as the inverse square of the distance, we have only to suppose that the medium is
capable of transmitting, with a definite though large velocity, simple periodic undula-
tory disturbances, similar to those whose propagation by the medium constitutes, ac-
cording to the electromagnetic theory, the transmission of light.


